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Abstract—This paper outlines our research in academic social 

networks. We analyze the complex collaboration structure among 

the participants of academic conferences, and outline a 

methodology to characterize a conference in terms of its 

important personality metrics. In particular, we focus on 

networks capturing the collaboration between the program 

committee members and the regular authors of a conference, 

including co-authorship and institutional linkages, and derive a 

quotient to quantify the fairness of scientific collaborations for 

the conference.  Using a simple model, we show how the stability 

of a conference can be evaluated as an inverse measure of the 

fairness quotient. We have found that the fairness factor of a 

conference is a dynamic property that can vary from one year to 

another based upon the co-authorship network of the conference. 

Our findings offer fundamental insights into the evolution of 

special communities or interest groups that tend to form in an 

academic network with the sole purpose of promoting interests 

with regard to professional growth of individuals in these 

communities at the cost of denying privileges to individuals 

outside the communities. We have presented our results in the 

light of two popular conferences that we have analyzed over a 

period of five years, but our methodology is applicable to any 

conference and over any number of years, and can be extended to 

a study of other complex social networks as well.  

 

Keywords—ForceAtlas, Gephi, network communities, 

network graphs, OpenOrd, scientific collaboration, social 

networks.  

I. INTRODUCTION 

CADEMIC conferences  are collaborative and multi-site 

initiatives that involve students, researchers, educators, 

and organizations.  Such a conference is usually characterized 

by scientific collaborative networks of people, institutions, and 

organizations that are largely independent, geographically 

distributed, and diverse in terms of their operating 

environment, society, and culture. Given the importance of 

academic conferences in influencing professional careers in 

terms of hiring and promotions, it is imperative that fair and 

stringent policies should exist with respect to authorship 

credit, paper review, paper acceptance, plagiarism, and 

resubmission of previous work for publications in an academic 

conference.  

For a conference, particularly a selective one, the review 

process needs to be unbiased, balanced, and free of conflicts 

of interest. In this regard, the Technical Program Committee 
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(TPC) plays a crucial role in terms of its goals, composition, 

and responsibility as a steering committee to handle the TPC’s 

influence on reviewers, authors and TPC-authored papers. A 

“common interest clique” formed between one or more TPC 

members and regular authors can jeopardize the ideals on 

which a conference is founded; moreover, the existence of 

such a special-interest community or group can unfairly 

promote professional growth of individuals in the community 

at the cost of denying the same privileges to those outside the 

community. 

The work presented in this paper concerns coming up with a 

systematic analysis methodology to characterize academic 

conferences in terms of some important personality metrics. 

The metric that we have focused on is fairness and we have 

outlined a method to derive the fairness quotient of a 

conference. Using a simple model, we also show how the 

fairness stability of a conference can be evaluated as an 

inverse measure of the fairness quotient. We have found that 

the fairness factor of a conference is a dynamic property that 

can vary from one year to another based upon the co-

authorship network of the conference. Our method is generic 

and can handle a complex set of variables, hence can be 

extended to look at other criteria as well as study other 

complex social networks. 

We refer to the network of collaboration among the 

participants of a conference as the Conference Collaboration 

Network (CCN).  A three-step approach is followed to identify 

the fairness factor of such a CCN.  We first target a select set 

of conferences and obtain the relevant collaboration data. 

Next, we extract patterns from the collaboration data. Finally, 

we draw inferences about the nature of the conference from 

the extracted patterns. Whereas much of previous work has 

addressed academic conduct, integrity, and authorship order, 

our paper is one of the first to analyze the impact of the 

program committee on authorship. In light of the variability, 

ambiguity, and uncertainty that exist today, we believe our 

results can be used to guide and optimize policies regarding 

the rules of engagement in different academic events and 

networks.  

The paper is organized as follows. Section II describes past 

work in the area of social group network analysis. In Section 

III we clarify certain terminologies and explain our research 

objectives. Section IV details on the effective representation of 

academic networks in a way that helps easy visualization of 

data. Section V presents our derivation of the fairness factor 

and stability of a conference. Section VI incorporates the 

results, and Section VII draws the conclusions.  
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II. PAST WORK 

The CCNs that we have analyzed are interdependent 

networks. Past work has addressed interdependent networks as 

well. For example, Danziger’s paper [1] on interdependent 

networks, both in terms of their static and dynamic properties, 

has shown that multiple networks depending on each other, 

through connections that defined each network as a “layer” 

with inter-layer connections providing the order and structure 

of this interdependence, could be used for interpretation of 

complex and interconnected data.  In the context of social and 

scientific networks, evolution and collaboration within the 

network is important for our research. One such analysis [2] of 

social networks, that included the Cornell University Library 

archive and customer-to-customer phone calls for a 4-million-

user mobile network, has been used to demonstrate that these 

networks are constantly evolving in terms of emergence and 

disappearance of communities as well as their dynamics.  In 

the area of collaborative networks, a different analysis [3] of 

scientific collaborations for MEDLINE, the Los Alamos e-

Print Archive, SPIRES, and NCSTRL has shown the 

differences in the average number of papers-per-author and 

authors-per-paper in four scientific areas – astrophysics, 

condensed matter, high-energy, and computer science; it was 

found that these collaboration networks were highly clustered 

and specific areas (such as high-energy-physics) had 

noticeably different amounts of authors-per-paper. Similarly, 

experimentation [4]  with ResearchGate data, using network 

centrality and PageRank algorithm, used academic 

connections keyed by the “interest” field to help rank authors 

in a collaborative network in terms of influence on the 

network and value, while categorizing them by discipline. On 

similar lines, Barbasi et al [5] did a study of journal 

collaborations in mathematics and neuroscience, and showed 

that substantial differences exist in the rate of collaboration 

and the shift over time, of clustering and author separation as 

well as the increased fracturing in links from incoming 

authors, compared to those already in the network.  

Our research differs from those mentioned in the previous 

paragraph primarily in the focus of our analysis. Previous 

research has focused mainly on analyzing the properties of the 

networks (e.g. centrality, separation, degree, community size, 

etc.), determining how they changed over time, and drawing 

results and conclusions from those properties. We have, 

however, used various network properties for the computation 

of the values of fairness and stability of an academic social 

network. We have also attempted to contextualize and 

interpret the fairness and stability values rather than just 

tabulating the results and showing their variance.  

III. TERMINOLOGY AND OBJECTIVES 

In our work, a CCN is represented as a regular network 

graph comprising nodes and edges. Each node represents a 

participant in the conference, either as an author, or a 

Technical Program Committee (TPC) member, or both. Each 

edge connects two nodes, either as co-authors or as 

participants from the same institution.  The degree of a node is 

the number of connection edges it has. A community in the 

graph is defined as a group of nodes with dense connections 

between them. A CCN has an inherent, three-level hierarchy: 

authors, TPC members, and those who are both authors and 

TPC members.   

When we started our analysis of conferences, we first 

investigated if any meaningful information about co-

authorship communities could be obtained via network 

analysis of co-authorship edges in the graphical representation 

of the conference data. We felt that the results were 

inconclusive because while raw collaboration data did show 

the structure of the conference and its communities, it did not 

explain why the structure was the way it was.  A similar 

problem surfaced in trying to measure the success of a 

participant in a conference using general and specific 

properties of the collaboration network and the network nodes. 

The main issue was that defining success solely in terms of 

collaborative values proved to be difficult and not entirely 

accurate. Defining success in terms of co-authorship is not a 

functional procedure; depending on the goals of the author and 

the personal ideals of success, the definition can vary. Since it 

was not be possible to determine the author’s end goal from 

the data, we decided to not focus on determining the success 

of authors. 

While concepts such as co-authorship communities and 

success are not possible to be determined based solely on 

collaboration data, fairness is something that is verifiable 

using only the network properties of the CCN. The method we 

use to determine fairness depends on analyzing the inter-level 

connections of multi-level collaboration. Initially, we resorted 

to manual analysis of both numerical and visual properties of 

the CCN in parallel. Ultimately, the visual properties proved 

to be more useful for the manual analysis, and based on the 

conclusions drawn, we set out to find various numerical 

properties of the CCN that could be combined to obtain a 

fairness quotient. Of course, the fairness quotient has to be 

size-agnostic, so that it is consistent across all conferences, 

large or small, and once such a quotient is obtained, 

conferences can be automatically rated for fairness without the 

need for manual analysis any more.  

IV.  NETWORK REPRESENTATION 

A.  Data Procurement  

The obvious first step in procuring the CCN data is deciding 

upon a conference. Several different conferences (DAC, 

ICCAD, NOCS, CODES, EMSOFT) were selected for 

analysis and the relevant conference citation data - paper titles, 

authors, and affiliations - were gathered for a time period of 

five years (2010 to 2014). The original plan for collecting the 

data was to use the IEEE Xplore [6] API to automatically 

download all of the citations for each conference for the 

chosen time frame. However, due to API limitations, the data 

had to be gathered manually by using the command search 

feature that yielded data separately for each year of each 

conference; the data was exported using the “CSV export” 

feature. Next, the information regarding the TPC members 

was obtained from the website of each individual conference, 

and manually inserted into the CSV files. We decided to do a 
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thorough analysis for the NOCS1 and ICCAD2 first before 

considering other conferences.   

B.  Data Processing  

The conference data in CSV format was processed using a 

Python program we developed that generated the network 

graph. A node was created for each participant, and the node 

was tagged with the role (TPC or author or both), the 

institution of affiliation (university or company), and the name 

of the participant. The program also created edges between the 

nodes when they represented authors who were connected via 

co-authorship, institution, or even social groups (the last item 

representing the class where people from different institutions 

co-authored).  

C.  Data Visualization 

During our analysis, different visualization methods were 

utilized to picture and understand the network properties 

better. The network graph itself was analyzed and visualized 

in Gephi [7], an open-source graph visualization platform. A 

script was written to automatically color the nodes and the 

edges in the network graph according to their tags, as shown 

in  

Figure 1.  These colors helped understand the network more 

easily. However, simply coloring the network was not enough 

to clarify its meaning, as the issue of a good graphical layout 

still remained to be solved.  

 

 
 

Figure 1.  Color keys for graphs 

D.  Data Layout 

At first, the default layout algorithms present in Gephi were 

 
1 NOCS: International Symposium on Networks-on-Chip 
2 ICCAD: International Conference On Computer Aided Design 

used for force-directed layout of the network graph. However, 

this did not lead to good results because the layout did not 

show a clear visualization of the connections and the 

relationships in the graph. The nodes in the graph were far too 

compressed to allow any information to be gleaned from a 

visual inspection. The default algorithms used for layout in 

Gephi are the ForceAtlas [8] and the Yifan Hu [9] algorithms. 

Although neither satisfied our visualization requirements, the 

former turned out to be better than the latter. Figure 2 is a 

sample network layout using the ForceAtlas algorithm on the 

NOCS 2010 conference network. 

 

 
 

Figure 2. ForceAtlas algorithm driven layout 

E.  Layout Improvement Algorithms 

Since the previously-mentioned algorithms were not very 

suitable, we searched for and found a potential alternative 

candidate on the internet – the OpenOrd [10] algorithm, 

available as a plug-in for Gephi. OpenOrd uses a five-stage 

simulated annealing process and an edge-cutting technique to 

generate layouts that scale well to large and complex 

networks. Figure 3 is a sample network layout using the 

OpenOrd algorithm on the NOCS 2010 conference network. 

In terms of the layout, the OpenOrd algorithm provided almost 

everything we wanted; it provided a good visualization of the 

connections in the network and also made it clear how 

“central” and “important” various nodes were, which was 

required to understand the hierarchical relationships between 

the nodes. However, OpenOrd was still not ideal for our 

purposes due to the visual clutter it created owing to the 

absence of any shape or form in the layout it portrayed. 

Another layout algorithm that is available in and works with 

Gephi is Fruchterman-Reingold [11], one of the first 

algorithms for force directed drawing. Unfortunately, it did 

not satisfy our requirements when acting alone; the layouts 

created allowed visual understanding, but they missed the 
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clear visual structure that lends itself easily to analysis. 

Fortunately, when Fruchterman-Reingold was applied to the 

graph in conjunction with the OpenOrd algorithm, it removed 

the previously-mentioned clutter and generated an easily 

understandable layout that still retained the important 

properties. Figure 4 is a sample network layout generated by 

applying the Fruchterman-Reingold algorithm to the NOCS 

2010 OpenOrd network layout seen in Figure 3. 

 

 
 

Figure 3. OpenOrd algorithm 

  
 

Figure 4. Fruchterman-Reingold applied after OpenOrd 

As can be seen in Figure 4, the network layout obtained by 

using the two algorithms in sequence was almost perfect. But, 

while the graph shows connections between the nodes very 

clearly, it does miss the clarity of multi-level visualization.  

Visualizing connections between the different levels of nodes 

(e.g. authors, TPC members, TPC-authors3) is a key 

component because it makes the relationships and influences 

between nodes more visually apparent.  

 Getting a multi-level representation, however, was not 

difficult. We discovered a layout algorithm called Network 

Splitter 3D [12] on the Gephi plugin marketplace that allowed 

a network to be split into levels based on a z-level tag for each 

node, and then rotated about the x-axis to visualize the levels. 

When this splitter was applied to the network graph obtained 

after applying the Fruchterman-Reingold and OpenOrd 

algorithms, it produced an easy-to-understand, multilevel 

visualization that showcased all the relevant network 

properties and met our requirements. Figure 5 is a sample 

layout showing the result of applying the Network Splitter 3D 

algorithm on the NOCS 2010 Fruchterman-Reingold and 

OpenOrd network layout seen in Figure 4. With the CCN 

graphs represented in 3D, the next step was to make use of the 

visualization to perform different types of analysis on the 

networks.  

 

 
 

Figure 5. The Network Splitter 3D multilevel visualization 

applied to Fruchterman-Reingold and OpenOrd combination 

V.  NETWORK ANALYSIS 

We wanted to understand how TPC members influenced 

authorship. In that regard, it was not only the regular authors 

but the TPC members as well who played a role in our concept 

of “fairness” in a network. In order to find a numerical 

explanation for this fairness metric in relation to the TPC-

authors, all the relevant properties of the network and sub-

networks were analyzed. These included the average degree of 

 
3 A TPC-author is a TPC member who also authored a conference paper. 
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authors, average degree of TPC members, number of 

communities, average path length, etc. These values alone did 

not function as indicators of fairness in themselves, but when 

applied to different segments of the network, they could be 

converted to a discrete fairness value. 

After the network properties mentioned above were 

extracted for a conference, the focus shifted to trying to 

determine how they could be used to represent the fairness of 

the conference. To do so, a clear definition of fairness was 

needed. After consulting a variety of network topologies for 

different conferences, it was determined that an “unfair” 

conference would be one where relationships that were 

conflicts of interest either gave some authors advantages, or 

others disadvantages, in areas such as paper acceptance 

likelihood and co-authorship desirability. 

There is an undeniable likelihood of papers authored by 

TPC members to be accepted due to the fact that by virtue of 

being a part of the steering committee, the TPC members are 

already regarded as more “elite” and influential than the other 

authors. Therefore, if a TPC member were to write a paper 

like any other author, that paper would have a higher 

probability of being accepted. This observation led us to the 

idea of comparing the authorship groups of TPC members to 

those of the other authors. If the groups were abnormally 

large, with TPC members having an average of ten co-authors 

versus an average of three for other papers for example, it 

would imply that they were most likely included due to the  

influence of their name and level, rather than actual 

contributions to the paper itself.  

A. Fairness Quotient 

To have a quantitative measure of fairness, we first 

extracted two community-related values from the conference 

collaboration network and combined them as follows:   

 TPC-author community size mean ( 𝑐𝑡𝑝𝑐−𝑎) = the 

average size of the communities which TPC-authors 

were part of, 

 Author community size mean (𝑐𝑎) =  the average size 

of the communities that the normal conference authors 

were part of, and 

 TPC to author community ratio ( 𝑟𝑐) = the ratio of the 

average size of TPC-author communities to the average 

size of normal author communities. 

Next, we extracted from the network two different values 

related to the degree of the nodes, and combined them as 

follows:   

 TPC-author degree mean (𝑑𝑡𝑝𝑐−𝑎) =  the average 

degree of TPC-authors in the graph; this is different 

from community size because community sizes do not 

take into account connections outside of communities,  

which are frequently institutional connections that 

stretch across the network between communities,   

 Author degree mean (𝑑𝑎) = the average degree of all 

authors in the graph, and  

 TPC to author degree ratio ( 𝑟𝑑) = the ratio of the 

average degree of TPC-authors to the average degree of 

the general conference authors. 

Finally, the total fairness value, that we call the fairness 

quotient (𝑣𝑓) of a conference, was calculated from the TPC to 

author community ratio ( 𝑟𝑐) and the TPC to author degree 

ratio ( 𝑟𝑑) as follows:  

 𝒓𝒄 = φ1 ×
𝑐𝑡𝑝𝑐−𝑎

𝑐𝑎
    

  𝒓𝒅 =
𝑑𝑡𝑝𝑐−𝑎

𝑑𝑎
 

 𝒗𝒇 = φ1 ×  
𝑟𝑐+ 𝑟𝑑

2
= φ1 ×

φ1 ×  𝑐𝑡𝑝𝑐−𝑎
𝑐𝑎

+ 
𝑑𝑡𝑝𝑐−𝑎

𝑑𝑎

2
 

 

    Note: φ1 is a re-ranging parameter for which we have used 

a value of 10.  

VI. RESULTS 

Table 1 shows the computed fairness quotient (𝒗𝒇) for each 

year of the two selected conferences (NOCS and ICCAD) over 

a period of five years. As can be seen, the “fairness” of 

conferences can vary over time.  

 

Table 1. Fairness quotients from 2010 to 2014 

Conference Year 𝒗𝒇    

NOCS 

2010 3.2 

2011 3.0 

2012 4.4 

2013 1.9 

2014 2.2 

ICCAD 

2010 4.1 

2011 5.7 

2012 6.1 

2013 2.3 

2014 6.5 
 

In order to determine the correctness of our method of 

determining fairness of conferences, we compared our 

analytical results with the fairness determined from a manual 

visual analysis of the same conferences. For the NOCS 

conferences, we found 𝒗𝒇 to be an excellent measure of the 

fairness for any particular year.  

A. Average Fairness Interpretation 

To understand the significance (and the problem) of 

averages, let us consider the following average values of the 

fairness quotient:  

  �̅�𝑓−𝑡𝑜𝑡𝑎𝑙 = average fairness quotient calculated for 

NOCS and ICCAD over five years, 

  �̅�𝑓−𝑛𝑜𝑐𝑠  = average fairness quotient calculated for 

NOCS over five years, 

  �̅�𝑓−𝑖𝑐𝑐𝑎𝑑 = average fairness quotient calculated for 

ICCAD over five years. 

The values of the average fairness quotients are shown in 

Table 2.  
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Table 2. Fairness averages for datasets 

Average quotient Value 

 �̅�𝑓−𝑡𝑜𝑡𝑎𝑙 3.96 

 �̅�𝑓−𝑛𝑜𝑐𝑠 2.94 

 �̅�𝑓−𝑖𝑐𝑐𝑎𝑑 4.97 

 

The table shows that the average fairness considering all of the 

data (for the two conferences) is 3.96. However, averaging a 

value across both conferences is not very meaningful; 

computing the quotient  �̅�𝑓 for each conference and comparing 

different conferences based on the quotient make sense 

because that allows us to interpret the fairness differences of 

conferences in terms of the values on the same scale. Since the 

fairness quotient is computed using the ratios of metrics 

(𝒓𝒄 and 𝒓𝒅) on a particular subset and not the entire network, 

the value of the quotient retains a consistent meaning 

independent of the size of the conference. Hence, looking at 

the differences in the average fairness values of NOCS and 

ICCAD is more meaningful than considering a total average. 

The average fairness of NOCS computed over the five years 

from 2010 to 2014 is 2.94. For ICCAD, the same computation 

returns a result of 4.97. ICCAD is thus about 69% more fair 

than NOCS.  

B. Stability Interpretation  

Let us represent the fairness change of a conference, 

between two consecutive years of interest, by ∆𝑓  and the 

average fairness change over a period of time as ∆𝑓
̅̅ ̅̅  . Clearly, 

for the subsequent years y1 and y2, the fairness change is given 

by  

 

∆𝑓𝑦1→𝑦2
= |𝑣𝑓𝑦1

− 𝑣𝑓𝑦2
| 

 

Therefore, for a range of years, y1 to ym, divided into n 

intervals, the average fairness change can be calculated as  

  

∆𝑓  =
∆𝑓𝑦1→𝑦2

+ ∆𝑓𝑦2→𝑦3
+ ⋯ + ∆𝑓𝑦𝑚−1→𝑦𝑚

𝑛
 

 

The average fairness value is next normalized using 𝜎 , the 

standard deviation of the ∆𝑓𝑦𝑗→𝑦𝑗+1
values over the n year 

intervals. This yields a metric for the standardized fairness 

change and serves to standardize the meaning or interpretation 

of the average fairness change across all datasets.  The 

standard deviation is calculated as  

 

𝜎 =
√

∑ (∆𝑓𝑦𝑗→𝑦𝑗+1
− ∆𝑓)

2
𝑚−1
𝑗=1

𝑛
 

 

 

 

After normalization, we obtain an expression for the 

standardized fairness change as 
 

∆𝑓𝑠=
∆𝑓

𝜎
 

 

Stability being an inverse measure of variation or change, we 

define the fairness stability of a conference as  
 

𝑆𝑓 ∝  
1

∆𝑓𝑠
 , 

which yields  

𝑆𝑓 = φ2 × (∆𝑓𝑠
̅̅ ̅̅ )−1 =

φ2

∆𝑓𝑠
̅̅ ̅̅⁄  

 

Note that  φ2 is the constant of proportionality that we have 

also used as a re-ranging parameter with a value of 10.   𝑠𝑓 is 

scaled by 10 in our examples to normalize its scale with 

respect to the other variables such as 𝑣𝑓.   

C.  Stability Analysis  

Let us consider the stability of NOCS and ICCAD, as 

shown in  

 

Table 3 and  

Table 4 respectively, in terms of the following metrics:  

  𝒔𝒇−𝒏𝒐𝒄𝒔 = stability of NOCS calculated for the 

year intervals 2010-2011,   2011-2012, 2012-2013,   

and 2012-2013, and 

  𝒔𝒇−𝒊𝒄𝒄𝒂𝒅 = stability of ICCAD calculated for the 

year intervals 2010-2011,   2011-2012, 2012-2013,   

and 2012-2013. 

From the NOCS fairness value analysis, we see that the 

fairness value changes between the years (relative to the 

annual fairness values) do not show large swings, but there are 

still noticeable fluctuations. These fluctuations are in the 

intervals of 2011 to 2012 and 2012 to 2013, and the data 

shows that a brief period of greater-than-average fairness 

emerged in the conference and subsequently vanished, leaving 

the conference more unfair than it was in 2010, before the 

temporary upturn had even started. When  𝒔𝒇−𝒏𝒐𝒄𝒔 is computed 

across the five consecutive single-year intervals from 2010 to 

2014, we get a result of 8.54. Since we have already analyzed 

and characterized NOCS, a new conference with a stability 

value different from  𝒔𝒇−𝒏𝒐𝒄𝒔 will now allow us to characterize 

the new conference’s stability relative to NOCS. 

When 𝒔𝒇−𝒊𝒄𝒄𝒂𝒅 is computed across the same five consecutive 

single-year intervals as NOCS, we get a stability value of 6.28. 

At a first glance, this would imply that ICCAD has more 

swings in fairness than NOCS making it less stable, but that is 

not the case; it is just that the swings that do happen, tend to 

be larger. For NOCS, the swings greater than the standard 

deviation are on an average 1.77 larger. For ICCAD, the 

swings larger than the standard deviation are larger by an 

average factor of 2.03. This also shows that ICCAD’s 

significant fairness changes are about 14% larger than those of 

NOCS.  

 

 



DRAFT VERSION BEING REVISED FOR CONFERENCE SUBMISSION – PLEASE DO NOT DISTRIBUTE WIDELY 

 

 

Table 3. NOCS stability computation 

 

Parameter Years 2010 2011 2012 2013 2014 

𝑣𝑓   3.2 3.0 4.4 1.9 2.2 

∆𝑓𝑦𝑗→𝑦𝑗+1
 

2010-2011 0.2    

2011-2012  1.4   

2012-2013   2.5  

2013-2014    0.3 

∆𝑓
̅̅ ̅ 

2010-2011,    
2011-2012, 
2012-2013,    
2012-2013 

∆𝑓 ̅̅ ̅̅  =  
 0.2 + 1.4 + 2.5 + 0.3

4
= 1.1 

𝜎 

2010-2011,    
2011-2012, 
2012-2013,    
2012-2013 

𝜎 = √
(0.2 − 1.1)2 + (1.4 − 1.1)2 + (2.5 − 1.1)2 + (0.3 − 1.1)2

4
= 0.94 

 

 𝑠𝑓−𝑛𝑜𝑐𝑠  

2010-2011,    
2011-2012, 
2012-2013,    
2012-2013 

   𝑠𝑓−𝑛𝑜𝑐𝑠 =  
φ2

∆𝑓𝑠
̅̅ ̅̅⁄ =  

φ2

(
∆𝑓 ̅̅ ̅̅  

𝜎
)

⁄ =  
10

(
1.1

0.94
)

= 8.54 

 

 

Table 4. ICCAD stability computation 

Parameter Years 2010 2011 2012 2013 2014 

𝑣𝑓   4.1 5.7 6.1 2.3 6.5 

∆𝑓𝑦𝑗→𝑦𝑗+1
 

2010-2011 1.6    

2011-2012  0.4   

2012-2013   3.8  

2013-2014    4.2 

∆𝑓
̅̅ ̅ 

2010-2011,    
2011-2012, 
2012-2013,    
2012-2013 

∆𝑓 ̅̅ ̅̅  =  
 1.6 + 0.4 + 3.8 + 4.2

4
= 2.5 

𝜎 

2010-2011,    
2011-2012, 
2012-2013,    
2012-2013 

𝜎 = √
(1.6 − 2.5)2 + (0.4 − 2.5)2 + (3.8 − 2.5)2 + (4.2 − 2.5)2

4
= 1.57 

 

 𝑠𝑓−𝑖𝑐𝑐𝑎𝑑  

2010-11,    
2011-12, 
2012-13,    
2012-13 

 𝑠𝑓−𝑖𝑐𝑐𝑎𝑑 =  
φ2

∆𝑓𝑠
̅̅ ̅̅⁄ =  

φ2

(
∆𝑓 ̅̅ ̅̅  

𝜎
)

⁄ =  
10

(
2.5

1.57
)

= 6.28 

  The preceding discussion demonstrates the efficacy of 

using the standard deviation (𝜎) to normalize or standardize 

the average fairness change (∆𝑓) before calculating the 

stability (𝑆𝑓). Let us go through a simple example for 

illustrative purposes. For NOCS, an example change of 1.6 is 

significant compared to any of the calculated annual fairness 

values (e.g., 2.2 in 2014). For ICCAD, where the values of 

fairness (e.g., 6.2 in 2014) are larger, a change of 1.6 is not as 

significant. NOCS and ICCAD being similar conferences, let 

us now imagine a very different conference with an average 

fairness value ( �̅�𝑓) of 51 - roughly an order of magnitude 

higher. For such a conference, a change of 7 (for example) in 

either direction is virtually insignificant compared to the 

fairness value itself. But, a change of 7 in either direction for 

NOCS and ICCAD would mean that something unexpected 

has happened. The imaginary conference with an average 

fairness of 51, however, will most likely have fluctuations that 

are far bigger than those of either NOCS or ICCAD, because 

fairness changes tend to scale relative to the fairness values 

themselves, thus giving this particular conference (with the 

average fairness of 51) a far higher standard deviation. 

Therefore, normalizing the data using the standard deviation  
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gives the computed stability value ( 𝑠𝑓−𝑐𝑜𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒) the same 

meaning regardless of the dataset it was calculated with. 

NOCS and ICCAD were initially chosen as the conferences 

for our analysis because they were popular technical 

conferences expected to be stable and fair. The overall 

stability values for these conferences, calculated over five 

years, show that NOCS and ICCAD, while not extremely so, 

are still unstable in the context of our definition of fairness; a 

visual analysis does not yield this level of insight that is 

provided by the computed stability and fairness numbers. 

VII. CONCLUSION 

We defined and analyzed fairness and stability of scientific 

collaborations in academic conferences by using co-authorship 

and institutional attributes of papers appearing in NOCS and 

ICCAD over a five year period (2010-2014). The conference 

data obtained from IEEE Xplore was converted into a network 

graph, from which we computed numerical values of fairness 

and stability for the two conferences, using a methodology 

that we proposed; the methodology makes use of the network 

properties of the collaboration network graph of the authors. 

Our calculations led to interesting results that were not 

otherwise apparent from a simple visual analysis. When 

NOCS was initially selected as a conference for our analysis, 

we expected that the changes or fluctuations in its number of 

authors over the years would cause it to be unstable compared 

to ICCAD whose largely unchanging author-base would 

provide the conference great stability. However, our computed 

stability values showed that despite having similar number of 

authors every year, ICCAD was actually less stable than 

NOCS.  

We analyzed only two conferences for five years in this 

paper, but we aim to investigate the properties of a larger 

number of conferences over a longer time period in order to 

study if shifts in the scientific community affect the fairness 

and the stability of a conference. It would be very interesting 

to include the information about external reviewers in our 

network graph and perform a more precise calculation of 

fairness, and a more in-depth analysis of stability. We believe 

that our techniques and results can be used to guide and 

optimize policies regarding the rules of engagement in 

different academic events and networks. Given the generality 

of our methodology, it would be interesting to extend our 

analysis to the examination of other social networks as well. 
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